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The shallow water equations in spherical geometry provide a prototype for de-
veloping and testing numerical algorithms for atmospheric circulation models. In a
previous paper we have studied a spatial discretization of these equations based on
an Osher-type finite-volume method on stereographic and latitude—longitude grids.
The current paper is a companion devoted to time integration. Our main aim is to
discuss and demonstrate a third-order, A-stable, Runge—Kutta—Rosenbrock method.
To reduce the costs related to the linear algebra operations, this linearly implicit
method is combined with approximate matrix factorization. Its efficiency is demon-
strated by comparison with a classical, third-order explicit, Runge—Kutta method.
For that purpose we use a known test set from literature. The comparison shows that
the Rosenbrock method is by far superiorg 2001 Academic Press
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1. INTRODUCTION

Present day atmospheric circulation models used in weather forecasting and climat
search are often discretized by spectral transform methods. These methods are kno\
provide accurate solutions and to avoid the pole problem, which arises when grid-p«
methods are used on standard latitude—longitude (lat—lon) grid. However, with the trenc
ward higher grid resolutions some of the main drawbacks of the spectral transform met
become more apparent. These concern the high computational costs of the Legendre
form and the communication overhead for parallel distributed memory computers. (
investigations are directed at grid-point methods, which are expected to provide suffic
spatial accuracy for future fine-grid resolutions.

The current paper is devoted to the spherical shallow water equations (SWEs), wt
reveal most of the major numerical difficulties associated with the horizontal dynam
found in the full set of primitive equations. The paper is a companion to [13], where v
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examined spatial discretizations based on an Osher-type finite-volume method [15] u:
the third-order upwind scheme for the constant state interpolatios (§)—scheme [20]).
This combination provides a solid spatial discretization for the hyperbolic SWEs.

In [13] we proposed a combined lat—lon and stereographic grid to avoid the pole pr
lem that arises when solving the semidiscrete SWEs on a uniform lat—lon grid. In tl
article a different approach is adopted. Enhancing the grid resolution obviously nece
tates an efficient time integration method to keep the solution costs affordable. The :
of the current paper is to demonstrate a third-order, A-stable, Runge—Kutta—Rosenbi
integration method. Rosenbrock methods are linearly implicit and hence require expen
linear system solves. We will show that this disadvantage can be overcome by the te
nigue of approximate matrix factorization, which goes back to the early 1950s with splittil
and alternating direction methods; see, e.g., [16]. When combined with this technique,
Rosenbrock method does not only remain third-order consistent and A-stable, but it
becomes cost-effective. We will demonstrate its efficiency by a comparison with a class
third-order explicit Runge—Kutta method using a known SWEs test set from the literatt
[23]. The comparison shows that the Rosenbrock method is by far superior. In this pa
the two integration methods are combined with the upwind spatial discretization from [1
They can, of course, also be combined with the usual central spatial discretizations.

The paper is organized as follows. In Section 2 we briefly recall the system of SWEs ¢
its linearization. The linearization is used as starting point to analyze stability. In Sectior
the third-order Rosenbrock method and the third-order explicit Runge—Kutta method
discussed. For the explicit method the time step restrictions on the uniform lat—lon &
on the combined grid are derived. For the Rosenbrock method with approximate ma
factorization, A-stability is proven. Section 4 describes our numerical experiments, wh
willdemonstrate the qualities of the Rosenbrock method combined with approximate ma
factorization.

2. PRELIMINARIES ON THE SHALLOW WATER EQUATIONS

In this section we briefly recall the system of SWEs in spherical coordinates and
linearization. Assuming Fourier—-Von Neumann analysis, the linearized problem is us
for the stability analysis. The spherical SWEs describe a pure initial-value problem on
rotating sphere and are defined as follows.

Letx € [0, 27) denote longitudep € [-7, +7] latitude, and > O time. Letu be the
velocity in the longitudinal directiony the velocity in the latitudinal direction, artdthe
height of the free surface above the sphere at sea leveh ke H + hs, wherehg describes
the height of underlying mountains. Further,detenote the horizontal velocity field (v),

f the Coriolis parameter2 sin ¢ with Q the angular velocity of the Earth,the radius of
the Earth, and the gravitational constant. Using the flux-form, the two-dimensional SWE
being composed of a continuity equation and two momentum equations, read [7, 23]

oH

dHu u gH dhg g d(3H?
T4V (Huw = (f+ -t Hv — =S 2
ot + V- (Huw < + a anqb) v acosp dr acosp oOr @
IHv u gH dhs g a(3H?)

V.(Hou) = —( f 4+ — Hu—=--—>=_°=2
otV (Hw) ( +atan¢) u— = % a 0 3)
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where the divergence operator is defined by

V.u= 4)

1 {au N (v cos¢)}
acosg | A '

The term on the right-hand side in (2) and (3) represent forcing terms. It concerns
Coriolis force, the curvature terms, and the hydrostatic pressure gradient force. Along v
the lat—lon coordinate system we apply stereographic coordinates. To save space we
omit the corresponding formulations of the SWEs. In [13] we have studied the spa
discretization of both formulations using the Osher upwind scheme.

2.1. The Linearization

Adopting standard practice, we consider the “frozen” linearized system of the Egs. (
(4) to analyze the stability properties of the integration methods. Let us linearize arour
constant state vectay = (H, Hu, Hv)T, where the upper bar refers to frozen variables
The resulting linearized system then reads

o + Ag. + Bg, = Caq, (5)
whereq = (H, Hu, Hv) T,
1 0 1 0 1 0 0 1
A=< —i2+gH 20 0], B=" —uv v U], a=acosp, (6)
—av 0 —v24+gH 0 20,
and the force matrix
tang
0 0o
C= %Li;f _ 2tzn¢w 2t3nq>v— 2t2n¢lj+ f_
%933%5 + B @ — 1%  —Cas Ca2

Note that the constant coefficient matricgsB, andC do not commute, which implies that
their eigensystems differ. Consequently, it is not possible to further simplify Eq. (5) tc
scalar equation. For our analysis we therefore need the eigenvalue—eigenvector deco
sitions of A andB. We haveA = XAEAX,' andB = XgEg X! with

0 1 -1
Xa = 0 u++gH —-Uu++/gH |,
v/gH v —v
_ (7)
—v 0
Xil=——| JWeH -} o,
v 9 _
~i/gH+m 1 0
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0 1 -1
Xg = | vogH u —u ,

0 v++gH —v++/gH

) (8)
—u 10
Xgl:\/l‘H %(\/gH_IT) 0 % s
° —3(VgH+v) 0 3

and

EA=diag< u ’J+\/gH’ J—\/gH)’ )
acosp’ acosp acosg

EB:dm<J 5+§9H,5‘59H>. (10)

PR

Note that both decompositions exist, since our system is hyperbolic. The eigenvalue
pressions forA and B are related to well-known physical features. The values containir
the \/g_I-T term are connected with the so-called gravity waves, while the remaining valu
are connected with the so-called advective waves. The corresponding wave speeds (
significantly; i.e., the gravity waves run much faster than the advective ones. In practi
these gravity waves need not be resolved, because most meteorologically important mo
are close to geostrophic balance, which implies low amplitude gravity waves. In gene
unfortunately, these waves dictate the critical time step at which stability can still be gu
anteed when using explicit methods. It is for this reason, that we focus on alternative ti
integration methods.

Following [13], we spatially discretize our system using Osher’s scheme [15] with
higher order state interpolation, which yields a second-order method. Assuming a unift
grid, Osher’s scheme applied to the constant linear system (5) simplifies to the third-or
(k = %)—upwind scheme [20] as given below. Consider the cell-centered grid points

A = (j - %)Ax, AL = ZW” o = —% + (k— %)Mn Ap = % (11)
and let the grid functiorwx(t) denote the semidiscrete approximation to the solutior
a(j, ¢k, t) of (5) on this grid. Denoted™ = XAE4 X!, whereEX = (|Ea| + En)/2 is
obtained fromE 4 by replacing its negative entries by zero. Introduce analogdsisiand
A~, B7, where the positive entries in the eigenvalue matrix are replaced by zero. T
semidiscrete l = %)-upwind approximation to (5) on grid (11) can then be written as

d
aijZijk, L=La+Lg+C, (12)
where
Lao=—(A"Df+ A D,), Lg=—(B"Dg + B Dp). (13)

The operator®} andD, are the upwind and downwind operatorsin the longitude directior
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ie.,
Wij_2k — bwj_1x + wijk + 2wj1k
Dijk: J J . J ]+ i (14)
_ —2wj_1k — 3wjk + 6wk — Wik
Dawji = j JGAA i+ i+2 (15)

D¢ and D denote their counterparts along latitude:, BT, etc., are evaluated in each
grid cell. For convenience of notation we omit their spatial dependence.

To analyze the semidiscrete system (12), we introduce the harmonic wave solu
wik(t) = w(t)ee Whitwtd o = /—1. Anelementary computation yields the ordinary dif-
ferential equation for the Fourier transform ~
—@=Lw L=La+Lg+C, (16)
where

La=—XaEaX3l Lg=-XpgEsXgh (17)

E . andEg are diagonal matrices with entries
A _ lleal

&= 3, ((cost - 1)? + sign(ea)o (4 — cosér) sinér), & = wiAk,  (18)
and

A 1 |eB| 2 : : o

és = 380 ((costz — 1)” + sign(ep)o (4 — COSEz) SiNr), & = waAd. (19)

ea denotes an eigenvalue @f. Likewise, eg denotes an eigenvalue &. A clarifying
discussion on the eigenvalues of the={ %)—upwind scheme, (18) and (19), can be founc
in [12].

The stability behavior of any integration method applied to the linear semidiscrete syst
(12) is governed by its stability behavior for the three-dimensional ODE system in Four
space (16). By periodicity and symmetry, it suffices to consjges in the interval |-, O].
Note that in our notation the dependenceawbrié;, &, is suppressed. For an introduction
to the theory of Fourier analysis for difference schemes, we refer to [5, 18].

To analyze stability in case of calculations on a combined grid, we also need the |
earization and the Fourier decomposition of the SWESs in stereographic formulation. -
derivation is similar to the one above and leads to completely equivalent expressions dt
the conformal character of the stereographic and lat—lon mapping. Therefore, we only
the counterparts of the eigenvalues expressions.

Ea, = diagmU, mU + 1/gH), mU — \/gH)), (20)
and
Eg, = diagmV, m(V + 1/gH), m(V — /gH)), (21)
where
m(¢) — #
" 1+asing’

andU andV denote the frozen stereographic velocity componemntgimndys-direction,
respectively.
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3. THE RUNGE-KUTTA INTEGRATION METHODS

In this section we discuss the third-order Rosenbrock method and the third-order, exp
Runge—Kutta method. Both integration methods solve general nonlinear ODE syste
w = F(w). Note that the semidiscrete system of SWEs fits into this framework. We expe
the Rosenbrock method to be an efficient candidate to solve this semidiscrete system,
it permits large time steps. The costs per time step are relatively high though. Theref
the third-order explicit method is included for comparison.

3.1. The Third-Order Rosenbrock Method

The method is derived from the general two-stage Rosenbrock formula from the s
ODE field [4, 6],

w't = w" 4+ byky + boko,

Sk = tF(w"),
(22)
Sk = tF(w" + a21k1) + y217 ke,
S=1—-y1],

wherebs, by, a1, 12, andy are free parameters which determine the methods specif
properties. The numerical solutiarf approximates attimet = t,,t = t,, 1 — t, denotes
the time step, and = F’(w") is the Jacobian matrix df (w) atw = w". When low to
moderate accuracy is required, methods of the Rosenbrock type have proven efficien
a variety of stiff ODE applications [6]. For method (22) the order of consistgniy/at
most 3.

We analyze the stability properties of our method by applying (22) to the Fourier trar
formed problem (16). The general, two-stage Rosenbrock methodpwitl?2 then yields
an amplification factoR(z 0),i.e.,w"+l = R(zL)d", with R(z) defined as the stability
function

2z 12—z

R =1 .
@ =t T a2

(23)

The stability functionR(z) yields A-stability for ally > ‘—11. In case of the special value

y = 3 + £+/3 a third-order, A-stable function is obtained. A-stability is attractive as i
implies unconditional stability in the sense of Fourier—Von Neumann for stable linear prc
lems. However, for multidimensional PDE applications as ours solving twice per time st
a linear system with the matrix— y F’(w") is rather expensive. Therefore, we will ap-
ply approximate matrix factorization. By this technique the numerical algebra costs
substantially reduced, whilp = 3 and A-stability are still possible.*******

3.1.1. Approximate Matrix Factorization

We rewrite the semidiscrete systeim= F (w) asw = F(w) = Fa(w) + Fg(w), where
Fa denotes the semidiscrete longitudinal operator extended with the force terms pre:
in Eq. (2) andFg denotes the semidiscrete latitudinal operator extended with the for
terms present in Eq. (3). HencE, and Fg are one-dimensional operators defined along
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sets of longitudinal and latitudinal grid lines, respectively. The idea of approximate mat
factorization is to redefin& by

S=( —ytda( —ytIe), Ja=Fp"), Jg=Fgw"), (24)
or, equivalentlyJ by
J=F @ +yrd, J=-Jad. (25)

Instead of solving a huge two-dimensional linear system, we thus solve two one-dimensit
linear systems, each of which is uncoupled per grid line. The costs per step then amou
two function evaluations fdF, one Jacobian evaluation, and one band solve per longitudir
and latitudinal grid line. Since we use the Osher scheme on a stencil of five grid poi
with three solution components, each Jacobian m#&tfikw") and F;(w") consists of a
blockband matrix with five blocks of (2 3). Note thatF,(w") is slightly more complex
as a consequence of the periodicity in longitudinal direction. The costs per time step
still considerably higher as compared to those of a standard explicit method. Howe
the Rosenbrock method combined with approximate matrix factorization yields a far m
efficient method, as our numerical results will show; see Section 4.

Approximate matrix factorization is reminiscent of the splitting technique already us
in more conventional alternating direction methods during the 1950s; see, e.g., [16].°
technique has been used in various other applications since then; see, e.g., [1]. The aL
have applied it successfully to large-scale atmospheric transport-chemistry problems, u
a second-order method from class (22) [3, 21]. As an iterative technique, approxim
matrix factorization has been successfully applied to large-scale transport problem:
surface water [10]. A recent survey can be found in [9]. In [11] and references there
interesting theoretical stability results are given revealing some limitations of approxim
matrix factorization in three-dimensional applications.

3.1.2. Consistency and Stability Properties
With J defined as in (25), method (22) is third-order consistent for arbitfamnenever

1 1
bi+by=1, balaor+y21) = >~V boos; = 3’
(26)

1
J/Z—J/+6=0, boys = —y.

The fifth conditiorb,y»; = —y results from the matrix factorization. These conditions yielc
a unique solution which defines the Rosenbrock method

1 3
n+1= n —k —k
w w+41+42,

Sk = tF(w"),
(27)
Sk =tF w"+gk —ﬂ tJk
3 1 31/ 1,
S=( -yt —yte),
with y = 1 + 1./3. For efficiency reasons, the matrix-vector multiplication in the secon
stage formula is removed by redefinikgby k, — %kl. This gives the following third-order
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Rosenbrock methob.

5 3
n+1_ .n Zk Zk
w w +4 1+4 2,

Sk = tFw"), 8)

2 4

=tF(w"+ ki | — =k
SI@ T (w +3 1> 3 15
S=( -yt —yrp).

In the remainder of this section, we will discuss stability properties of (28) by mea
of Fourier—Von Neumann analysis. To obtain the linear recurrence relation which gove
stability, we apply method (28) to the ODE system (16). Using the notation introduced
Section 2, we find the recurrence relatiof** = R(Za, Zg)®", whereZa = t(La +
Ca), 25 = T(l:B + Cg), and

NI =

R(Za, Zg) = | + §1(2é+ . |>”12, (29)

With Z = Za+ Zg andS= (I — yZa)(I — yZg). Suppose thaZ » and Zg are diago-
nalizable and share well-conditioned eigensystems. We can then proceed with the s
counterpart of (29), which reads

1.2
2z 52°—2

R(za, =1 s
a28) =14 A= y2ze) T A= yza2(—y2s)?

(30)

with z = zp + zg andz andzg denoting eigenvalues of respectivélx andZg. A conve-
nient property of the stability function (30) is that it mimics the A-stability property of the
original stability function (23). However, in this case the range of accepjabigues of
method (28) for which the A-stability property holds is smaller, as is shown in the followin
theorem.

THEOREM 3.1. The factorized stability functioB0) satisfies|R(za, zg)| < 1 for all
za. zg With Re(za) < 0, Re(zg) < Oifand only ify > 1 + /3.

Proof. By the maximum modulus theorem, it suffices to consider imaginary vajues
iby, zg = ib, for arbitrary real numbets;, b,. A simple computation givedR(iby, iby)| <
1if and only if

f(bj_, bz) = Ollb%bg —+ a2 (b% + bg) + Ol3b1b2 <0, (31)

whereo; = 3y* — 45, ap = § — 2y +5y2 —4y® ag = § — 4y + 8y? — 4>,

An extremum of the functiorf is either located at a stationary interior point or at a
noninterior point, i.e., fob; — +oo or b, — +o0. We first investigate its behavior for
b; — +oo. In that casef yields

f (b, b
im P02 k2 ay), Vb e R

b=+ b%

1 This method is studied independently in [14] for integrating advection—diffusion problems on sparse grids
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This function is nonpositive for abb, whene; < 0 anda, < 0, which yields

y > (32)

AW

The same result can be derived bpr - +o0, sincef (by, by) is symmetric irbl andbs,.
An extremum can also be found in a stationary point oolving for((,b , db "y =(0,0
yields

by =by, =0, (@)
. 200 + a3
— — 2—_7
by=b,=b+#0 with b® = 20y (b) (33)
. 2 20!2—0!3
byj=c#0 and b,=-c#0 withc Z_Tl' (©

We first consider the stationary poitg( b,) = (0, 0), wheref (by, by) = 0. LetH; denote
the Hessian determinant in a stationary paint

H (a)—82f(a)82f(a)—( (al €} )>2
P 902 902 = \ abyab, '

Accordingto, e.g.,[19], the functiof has alocal maximum ini® H; (Q) > Oand8 >(0) <
0. Taken into account (32), we thus find tHatemains nonpositive in a nelghborhood of
(b1, bp) = (0, 0), wheny satisfies

1 1

This condition is only sufficient. The theorem does not provide a decisive answer wi
H:(Q) = 0. In that case a further investigation of the behaviorfoih a neighborhood
of Q is necessary. For thg-values at whichH;(Q) =0 only y = % + %\/ﬁ guarantees
nonpositivity of f in a neighborhood of.0S0, for f to be nonpositivey should satisfy the
following necessary condition

1
yz5+ Jé (34)
Finally, we consider the four remaining stationary points of (33). These stationary poi
only exist wherb? > 0 andc? > 0. However, these conditions contradict conditions (32
and (34). Therefore, in case thiiis nonpositive over R these points do not exist.
Summarizing,f is nonpositive for allby, by) € R?iff y > 1 + 1/3. =

This result is of interest in its own, as it shows that for useful valuestbie A-stability
property is not lost by the matrix factorizatidnin general, the matrices, andZ g do not
commute, so that true unconditional stability for the linearized SWEs cannot be conclu
from Theorem 3.1. Note that Theorem 3.1 does provide a necessary condition in this c
The following example will illustrate that for the SWEs and noncommuting mattices
andZg, Theorem 3.1 provides a reliable indication for unconditional stability.

2In [11] it is pointed out that for a three-term splitting such a result does not exist.
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3.1.3. Example

We have approximated the maximum value of the amplification operator (29) over 1
interval &, & € [—m, 0]. Calculations are performed at a location near a pole, i.e., at
location where the longitudinal grid sizex acos¢ on the sphere becomes very small.
Locations near the poles are believed to be most critical in relation to stability (the p
problem). The example serves to identify thevalues at which the Rosenbrock method
(28) yields an unconditionally stable method when applied to the linearized SWEs alf
been spatially discretized with Osher’s scheme. For comparison, the same computation
be carried out for the third-order explicit Runge—Kutta method in Section 3.2.2.

LetU = v = 30,gH = 10F, a = 42000000 (2) (space and time units are meters and
seconds). Choosg = (7 — A¢)/2, i.e., a location close to the north pole. Furthermore
put AA = A¢ = /128, which corresponds approximately to a unifordf x 1.4° grid.
Omitting the force matrixC, we have computed accurate estimates of the maximum spect
radius of R(Za, Zg) for r = 10',i = 0, 1, 2, 3,4 andy = 0.25, 0.50, 0.75, 0.8, 0.9, 1.0.
The maxima are determined ferr < &, & < 0 using a 100« 100 grid. The following
table shows these maxima fpr= 0.25, 0.50, 0.75.

T 1 10 16 10° 10t

y =025 1.0000 1.0000 1.0008 2.2355 3.2207
y =050 1.0000 1.0000 1.0000 1.4014 1.5067
y =075 1.0000 1.0000 1.0000 1.0000 1.0000

The table reveals conditional stability far= 0.25 andy = 0.5 and indicates unconditional
stability for y = 0.75. Also fory = 0.8, 0.9, 1.0 maxima equal to 1.0 are found. This
leads us to conjecture unconditional stability for rlk> 0.75, in line with the result of
Theorem 3.1. We believe that the slightly larger valuejfoe § + $+/3~ 0.789 in this
theorem s due to the fact that the requirement for A-stability is more stringent. This prope
allows eigenvalues to lie in the whole of the left half of the complex plane, which is ni
the case in practice. Recall that the vajue- 0.75 also plays a special role for the stability
function (30). Inequality (31) implieg > 0.75 for |by|, |by| — oo.

Because the force matri® can possess eigenvalues with a small positive real part, w
have omittedC in the above computation. Note that, sinkeB, andC do not share the
same eigenvectors, adding the matfixdoes not simply mean that the linearized SWE-:s
become unstable. However, maxima slightly larger than 1.0 can occur; see also the exal
in Section 3.2.2. We assume that the makigictates the stability behavior of system (5),
since it grows with the inverse of cgs Note that the entries & are comparable in size.
However, A multiplies the derivative, andC is only a forcing matrix multiplyingy.

3.2. Explicit Runge—Kutta Time Stepping

An explicit s-stage Runge—Kutta method applied to system F(w) has the form

S
w = w"+ 1> bFW), (35)
i=1
i—1
Wo=w"+1> aFW), i=12..,s (36)
j=1
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In combination with central differences for space discretization, the most popular expli
Runge—Kutta method for hyperbolic problems is the classical four-stage method of or
four. This higher order method owes its popularity to its imaginary stability boundary
/8. In comparison with other explicit methods this boundary is satisfactory and in fz
close to the optimal value— 1 = 3 for explict Runge—Kutta methods [8]. However, since
we employ upwinding in the space discretization, a different method is chosen.

3.2.1. Stability Considerations

Let us consider methods of order= s for s = 1, 2, 3, 4When applied to a Fourier
transformed problem like (16), such a method yields a polynomial amplification opera
R(Z), Z = tL, with R(z) defined by the truncated Taylor series

p 1 .
R(z) = Z ﬁz'. (37)
i=0
Assuming that the most severe time step restriction indeed emerges from the longituc
operator in the polar region, it makes sense to first examine stability for the longitudi
operator alone. Hence, we take= L . Since our operator is diagonalizable, we are thel
able to examine stability through the scalar recurrence relaifdn = R(z)w", where

vV

2= = ((cosy — 1)° +-sign(ea)o (4 — costy) singy). o=+v/~1 —w <& <0 (38)

with v denoting the one-dimensional CFL number

T|€al
AL

andea denoting an eigenvalue &%, see (9). To determine the maximal valuegfat which

each method is stable, it suffices to draw #ldoci which lie inside the stability region of
the stability function. Accurate estimates from [12] yield

(39)

VA =

S 1 2 3 4

VA 0 087 162 174
va/S O 043 054 043

The scaled CFL numbera/s, is related to efficiency. Note that explicit Eular£ 1) is not
stable. For the other three cases, the scaled CFL numhgssare almost equal and close
to 0.5. Note that the case= 4 includes the classical four-stage method of order four. A
equal costs, third-order methods are slightly more stable.

Substitution of the maximal wave speed (maximal eigenvalue (18)yinyaelds a time
step restriction for linear stability. Lef > 0, then

VaAA . acog¢)vaAir

< =— (40)
max|ea| u++/gH
On a uniform grid AL = A¢) closest to the poles, cap) ~ %AA, yielding
ava 2 (41)

T < ———A\.
2(u++/gH)
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Consequently, we face a quadratic dependence on the spatial grid size instead of the |
linear one. The quadratic dependence leads to unacceptably small time steps.

3.2.2. Example

To illustrate the step size restriction (40), we return to the example of Section 3.1.3. |
the data used, (41) yields< 5.8va. Hence, we find that < 9.4 for any explicit three-
stage, third-order Runge—Kutta method. In our application this step size restriction is v
severe.

To check the validity of expression (40) we again compute the maximal spectral rad
(see Section 3.1.3) of the amplification operét()ﬁ) with R(z) defined by the third-degree
polynomial (37). We now distinguish between zero and nonzero force n@tihe table
below yields the maxima for a sequence of time stepBhe case& agc andZ ag refer to
nonzero and zero force mati®, respectively.

T 8 9 9.4 10 11

Zpgc 1.015 1.015 1.015 1.201 1.728
Zpg 1.000 1.000 1.000 1.209 1.737

For Z A the one-dimensional expression appears to be very precise, predicting linear
bility for = < 9.4 and error growth for larger time steps. ¢ We see nearly equal error
growth for the larger time steps. For the smaller ones, we also see a modest growth.
growth is caused by an eigenvaluef- B 4+ C with a small positive real part.

3.2.3. Relaxing the Step Size Restriction: A Different Grid Distribution

As mentioned before, there are several ways to reduce step size limitations. We here ri
the grid modifications as used in [13]. We discussed two possible remedies, i.e., longitud
grid coarsening toward the poles [2, 13, 22] and the use of a different grid structure
coordinate systeminthe polar regions[13, 17]. The latter approach concerns the constru
of a combined grid consisting of two stereocaps on the northern and southern hemispt
respectively, and a (reduced) lat—lon grid in the intermediate region. Figure 1 visualizes s
a grid distribution. In stereographic coordinates the grid distribution on either stereoca|
rectangular. The same holds on the intermediate region in lat—lon coordinates.

On both grid types, we can derive a step size restriction for explicit Runge—Kutta methe
similar to (40). We first consider a reduced grid. Such a grid is constructed from a unifo
lat—lon grid around the equator by halving the amount of grid cells in the longitudin
direction when approaching the poles, whenever the cell width in that direction projec
onto the sphere is reduced by a factor of 2. The distamcesy A4, is called the physical
cell width. Following (40), the stepsize restriction on a reduced grid yields

aco AN
r < _5(¢)VA (¢) ’ (42)
u++/gH
whereA(¢) depends on the latitudg i.e., on the level of reduction. Assuming that the
spherical variabledy, u, andv, have the same order of magnitude along the whole domail
the step size restriction is most severe in the area, where the smallest physical cell wid
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FIG. 1. Projection of a combined grid consisting of a reduced lat-lon grid away from the poles and a ster
graphic grid at the two polar caps onto the Cartesiary)-plane ¢ = 0). Two reductions were applied.

found. On a global reduced grid this gives

Lo acos(Z 5% va _2n Z“REdacos(”‘zA“’)uA’ 43)

~ NLpred U+ /gH nlo u++/gH

where nRed denotes the amount of reductions on the northern hemisphere,gaamtinL
nLreqdenote the amount of cells in the longitudinal direction after 0 and nRed reductio
respectively.

On a stereographic grid, an analysis similar to Section 3.2.1 can be performed. Ac
assuming that the step size restriction is most severe in the area with the smallest phy
cell width, we find on the combined grid

. < V2ravacosp (4)

NLinterfaceMax{|U + /gHI, [V + v/gH |}’

where¢ is the latitudinal boundary of the (reduced) lat—lon intermediate region of tt
combined grid and nikertacedenotes the amount of longitudinal grid points on that boundar
The value\/Zracos&/nLimerface approximates the smallest physical cell width over the
sphere after projection of the stereocap onto the glti)and\7 represent the linearized
velocity component ixs- and yg-direction, respectively. Note that the stability condition
(44) is composed of the two stability conditions found in each dimension, i.e., igitland
ysi-direction, respectively. Since the matrioks = X, Ea, X+ andBs; = Xg, Ep, X5 do

not share the same eigensystems, each linearized system has to be analyzed separa
case of atmospheric applications, we expect the gravity waves to dominate the flow;
the quantity\/g‘H is large. Therefore, the step size restriction in stereographic variables
more or less direction independent.
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To quantify the relation between the three step size restrictions (41), (43), and (44),
again focus on the example in Section 3.1.3. On the global uniform lat—lon Akid:
A¢ = {55, We have

T < Tunj = 5.8va. (45)

On the corresponding reduced gritl} (0) = A¢ =
we have

135 When applying three reductions,

T = Tred = 2nREd77uni = 8 tyni. (46)

Note that the number of reductions is limited by accuracy; i.e., too much reductions resul
atoo low grid resolution around the pole to properly represent the fast varying unit directi
vectors in this area; see [13]. On the combined grid, we must first position the stereoc
i.e., we have to specifg. For comparisonp is chosen such that the amount of reductions ir
the intermediate lat—lon region equals the amount of reductions found on the global redu
lat—lon grid; i.e., Nlared = NLinterface 1N terms ofryn; we find

4/2 cosp

Tuni ~ 34 Tyni 47
COS(H A¢) uni uni ( )

T = Tcombi =

with ¢ = 128
From (45)—(47), we can conclude that the step size restriction for explicit Runge—Ku

methods is considerably reduced when calculating on a global reduced or combined ¢
the latter providing an even better alternative for the uniform lat—lon grid. On grids with
realistic resolution, the alleviation is even more apparent. On a global reduced grid with th
reductions and\1(0) = A¢ = 27/576, and on a corresponding combined gfid: %,

we find

Tred = 8 Tuni,
and
Teombi = 40 Tuni,

These are the time step restrictions for the grids on which we will evaluate the time in
gration methods in the following section.

3.2.4. The Third-Order Explicit Comparison Method

In case the step size is limited by stability, a low-order method, e.g., réel, will
provide sufficient temporal accuracy. However, as seen in Section 3.2.1, peded is
slightly more efficient. Therefore, we use the following three-stage, third-order method
the comparison with the Rosenbrock method.

1 1 2
w™l = " 4 érF(Wl) + 6rF(Wz) + éTF(Ws), (48)

Wy =w", W, =" oyt 1

p=w" Wo=u"+TFW), W= u" + ZtF(Wy) + JTF(Wh). (49)

To avoid an unacceptable workload, these experiments will be done on a combined gri
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4. NUMERICAL EXPERIMENTS: A COMPARISON

In the preceding section we described two Runge—Kutta methods, i.e., the third-or
A-stable, Rosenbrock method combined with approximate matrix, factorization (28), hen
forth called Ros3, and the third-order, explicit, Runge—Kutta method (48), henceforth cal
RK3. For both methods the stability properties for the semi-discrete linearized systen
SWEs (12) were investigated.

In this section we intend to show that the Ros3 method with AMF on a uniform grid is f
more efficient than RK3 even when this method is applied on a combined grid employin
stereocap to alleviate the step size restriction. We use both methods to integrate the sy
of ODEs resulting from spatially discretizing the SWEs with Osher’s scheme. This fin
volume method is discussed in [13]. To judge whether Ros3 with AMF is more efficient th
RK3 applied on a combined grid, we also have to consider their relative workload per ti
step. An estimate of this relative workload is provided, which is confirmed by numeric
experiments monitoring execution time.

Both methods are applied to three test cases from the widely acknowledged SWEs
set [23], which was especially developed to validate new numerical methods to be use
circulation models. It concerns Test 2, global, steady-state nonlinear, zonal geostrophic
Test 5, zonal flow over an isolated mountain, and Test 6, a Rossby—Haurwitz wave. Test
chosen, because it provides a test with considerable activity in the polar area. Furthern
it has a known analytic solution without compromising the nonlinearity characteristic to t
SWEs. Test 2 is a stationary test case, though. Therefore, to truly test our time integra
method, we also consider two nonstationary problems, Test 5 and Test 6. For both case
exact solution is known and we have to rely on a high resolution spectral model for referel
These tests describe more realistic atmospheric flow patterns. For example Test 5, reso
a flow around a mountain, is challenging for most numerical solution methods. The ot
four tests from the SWEs test set, i.e., Tests 1, 3, 4, and 7, will be omitted, since they
not contribute additional information in relation to our efficiency question.

Calculations are performed on two different grids with related resolution. The unifor
lat—lon grid has 576 grid points in longitudinal direction and 288 grid points in latitudin:
direction, i.e., a®25 x 0.625 grid. The combined grid consists of a reduced lat—lon gric
for ¢ € [—, $] with ¢ = 1377/288 applying three reductions on each hemisphere and tv
stereocaps. Around the equator the resolution is equal to the resolution found on the unif
grid. By construction, the stereocap contains 18 grid pointgiandys-direction. Note that
a combined grid has approximately 20% fewer grid points than the corresponding unifc
lat—lon grid. The influence on the workload is not significant though, since some additio
work is needed for the spatial coupling between the stereocap and the intermediate re
As mentioned before, efficiency mainly depends on the maximal time step allowed by
time integration method and its workload per time step.

In case of the RK3 method the time step is restricted by stability. We determine t
time step by trial-and-error and denote it fpy«3. Note that the discussion on the time step
restriction in Section 3 concerned the linearized system of SWEs and thus provides
an estimate for an upperbound for the time step. Analysis of the computational comple
of the Ros3 method with AMF shows that the workload per time step of the Ros3 mett
is approximately six times as large as the workload per time step of the RK3 method. T
value is confirmed by numerical experiments on Tests 2, 5, and 6 monitoring execut
time. Therefore, the Ros3 tests are run with time stgps = 6 x trk3. Next the time step
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will be increased to determine the maximal time step at which stability is still obtained a
the accuracy is still acceptable.

Besides testing on stability, we measure the accuracy of our solution for each method
time step over a prescribed time period. The accuracy is evaluated by the max-norm of
relative error of the depth of the fluid layer, Rlf, and the absolute errors of the velocity
components in longitudinal and-direction, Abs(, U), and latitudinal ang/s-direction,
Abs(v, V), i.e.,

_ Hi,j — H(i, ¢5)
RellH) = nl?x BTV G o)

Abs(u) = n??-xwi,j —ui, oj)l,

’

Abs(v) = W?lei,j —v(Ai, 9j)l,

and similar expressions for Ad$j and Abs¥/). Hi j, u;; etc. denote the approximate
solutions.H (4, ¢;) etc. are the reference solutions, where the solution is exact in the ce
of Test 2 and given by a high resolution spectral method in the case of Test 5 and Te:
The high resolution spectral solutions are given on a daily basis.

Besides accuracy and stability, methods can also be tested on their abilities to cons
physical quantities, like energy and enstrophy, which are important for atmospheric floy
We monitored both quantities in the Ros3 runs. The cascade is negligible in all cases,
approximately 0.1% over the prescribed time periods.

4.1. Test?2

Test 2 represents a solid body rotation, where the height field and the velocity compont
in longitudinal and latitudinal direction read

aQup U} . .
H=hy— < g ° 4 2—;) (—COSA cOS¢ Sina + Sing cosa)?, (50)
U = Ug(COS¢ COSa + Sing COSA Sina), (51)
v = —Up SinA sina, (52)

wherehg andug are givenpg = 38.6 m/s andghy = 2.94- 10* m?/s>. Several orientations
are specified; however, we use the one over the pales §). The simulation period is five
days. For the RK3 methogkks = 111 s. To reach equal efficiency, we use the Ros3 methc
with AMF on the uniform grid with time step = 6 x trx3 = 666 s. The computations
remain stable. For Ros3 we then increase the time steptd 350 s, which still results
in a stable computation. Instability if found far= 1500 s. So, the Ros3 method with
AMF applied on a uniform grid is more efficient than an explicit method used on a relat
combined grid. We emphasize, that this grid type already significantly alleviates the til
step restriction found on a uniform grid for an explicit method (recall the factor 40 found |
linear analysis). We also ran this test with the unfactorized Ros3 method. The computati
with this method remained stable independent of the chosen time step.

In addition, the results on the uniform grid are more accurate than their counterparts
a combined one, as can be seen from Fig. 2. The difference in accuracy is not cause
the time integration method, but can be attributed to the higher spatial errors found wil
calculating on a combined grid; see [13]. Furthermore, increasing the time step for the R
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FIG. 2. Max-norm of the relative error it (first column), absolute error in, U (second column), and

absolute error i, V (third column) for Test 2 (first row), Test 5 (second row), and Test 6 (third row) found fol
the two time integration methods (RK3 and Ros3 with AMF) with given time steps. The errors are computed a
each time step (Test 2) or on a daily basis (Test 5 and Test 6).

method with AMF does not yield significant accuracy changes. Reducing the resolution
our uniform grid shows that, also in this case, the errors represent spatial ones. Note
for both methods the accuracy is satisfactory.

4.1.1. A Numerical Order Estimate for the Nonlinear SWE Equations

Test 2 is also used to illustrate that the Ros3 method with AMF behaves as a third-ol
method. Calculations are done on a grid with resolutioe=288 and nP= 144 for varying
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FIG. 3. An order estimate applied td andu respectively for the Ros3 method with AMF in case of Test 2.
The marks ©” denote the log(ali$1),) or log(abgu).), respectively. The solid lines illustrate the slope for a
third-order method.

time steps. As order estimate we useltenorm of the absolute error

)

abgvarn, = W?Avaﬁj.t - Va’il,?g

where vaf; ; yields the approximate value of a variable var in gridpoinf at timet
calculated with time step. We plotted this norm against the time step in a log—log plo
for respectivelyH andu; see Fig. 3. The figure confirms that our method is third-orde
consistent.

4.2. Testb

Test 5 consists of a zonal flow parallel to the equator which impinges on a mountain. 1
initial solution is given by the solid body rotation provided for Test 2 (50)—(52) with
0, up = 20 m/s, andhy = 5960 m. The surface or mountain height is prescribed by a con

r

he = he, (1— ﬁ), (53)

wherehg, = 2000 m,R=7/9,r2 = min[R2, (A — A¢)? + (¢ — ¢c)?], Ac = 37/2, andep. =
/6. The simulated time period is 15 days.

With regard to efficiency the results lead to conclusions similar to those found f
Test 2. The RK3 method is run with a time stegxs = 108 s. The Ros3 method yields
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computational stability for = 675 s~ 6 x 108 s. Since the reference solution is given or
a daily basis, we have to round off the time step to secure that a one-day time period ca
taken in an integer number of time steps. The time step for Ros3 can be further increa
Even a time stepf® h is possible. The results are less accurate though; see Fig. 2. Wt
atime step b1 h isapplied, an error iH of less than 1% is found. Foréi2 h time step,
we notice an error growth.

Furthermore, we like to comment on the accuracy loss caused by the definition of
mountain height. To prescribe the orography, the test set introduces a cone as given by
This choice is a little unfortunate. The surface height is not continuously differentiable o
the whole domain. The derivativé;g§ and% do not exist in the top and on the boundary
of the cone. However, to evaluate the force terms of the SWESs (1)—(3) on the right-hand s
these derivatives are needed. To circumvent this problem, we apply second-order ce
differences to approximate them. Results show an accuracy loss in the cells surroundin
areas, wheré(,% and% are not defined. The test set does not prescribe how the undefir
derivatives should be handled. Therefore, we cannot be conclusive about accuracy in't
areas. Figure 4 illustrates the relative erroHo&fter 1 day computed with the Ros3 method
with AMF on the uniform grid withc = 675 s. The maximal errors are indeed located clos
to the circle(r — A¢)2 + (¢ — ¢c)?> = 0 and close to the toph, ¢) = (i¢, ¢c). Note that
the errors remain local over the 1-day time period.

From our results for Test 5 we again conclude that the Ros3 method on a uniform ¢
is far more efficient than the RK3 method on a corresponding combined grid. We add t

FIG. 4. Relative error ofH on a uniform grid in case of Test 5. Calculations are done with the Ros3 methc
with AMF on a uniform grid witht = 675 s.



392 LANSER, BLOM, AND VERWER

for Test 5 we are not really satisfied with the accuracy found in case of calculations o
combined grid. Numerical experiments show that the accuracy loss on the combined |
is mainly due to the introduction of the stereocaps. When calculating on a global, redu
lat—lon grid the results are much more accurate. We assume that the vorticity waves p:
intervene with the interface band and cannot be represented sufficiently accurate. We c
avoid this problem by moving the stereocap closer to the poles, however, this would re:
in a smaller time step.

4.3. Test6

Test 6 is a Rossby—Haurwitz wave with a simulation period of 14 days. Again, no ex
solution is known. Meteorologists consider this test as standard, since similar flow patte
occur in practical applications. A reference solution is provided by a high resolution spec
circulation model.

The time steprrksz = 75 s yields computational stability for the explicit RK3 method
over the prescribed 14-day period. The Ros3 method with AMF is run fer6 x trks =
450 s. Increasing the time step, computational stability is still found for time wstep
3600 s. We can conclude, that the Ros3 method is more efficient than the RK3 methoc
a corresponding combined grid. Again, the results on the uniform grid are more accura

5. CONCLUSION

When solving the semidiscrete SWEs on a global uniform lat—lon grid, an explicit tin
integration method suffers from severe restrictions on the time step (pole problem). T
problem can be avoided by applying a suitable spatial grid or by choosing a more ste
time integration method, viz. an implicit one. In [13] we proposed the application of
stereographic coordinate system in the polar regions combined with a reduced lat—lon
in the intermediate region. In this article we considered an alternative time integrati
method, viz. the third-order Ros3 method with approximate matrix factorization.

We showed that the method is unconditionally stable, when applied to the lineariz
semidiscrete SWEs system on a uniform grid, provided that the Jacobian matrices of
fluxes in longitudinal and latitudinal direction commute. Furthermore, we showed that, ¢
to the approximate matrix factorization, the method is cost effective. To verify its efficienc
we compared the Ros3 method with AMF to a third-order explict RK3 method applied
the system of ODEs resulting from spatially discretizing our SWEs on a combined gr
Based on Test 2, Test 5, and Test 6 of the SWEs test set, we found that the Ros3 me
combined with AMF is far more efficient than the RK3 method even when the latter
applied to the semidiscrete SWEs system on a combined grid, which already significal
alleviates the time step restriction.
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